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Abstract
The dislocation width and Peierls barrier and stress have been calculated by the improved
Peierls–Nabarro (PN) theory for silicon. In order to investigate the discreteness correction of a
complex lattice quantitatively, a simple dynamics model has been used in which interaction
attributed to a variation of bond length and angle has been considered. The results show that the
dislocation core and mobility will be corrected significantly by the discrete effect. Another
improvement is considering the contribution of strain energy in evaluating the dislocation
energy. When a dislocation moves, both strain and misfit energies change periodically. Their
amplitudes are of the same order, but phases are opposite. Because of the opposite phases, the
misfit and strain energies cancel each other and the resulting Peierls barrier is much smaller than
that given by the misfit energy conventionally. Due to competition between the misfit and strain
energies, a metastable state appears separately for glide 90◦ and shuffle screw dislocations. In
addition, from the total energy calculation it is found that besides the width of dislocation, the
core of a free stable dislocation may be different according to where the core center is located.
The exact position of the core center can be directly verified by numerical simulation, and
provides a new prediction that can be used to verify the validity of PN theory. It is interesting
that after considering discrete correction the Peierls stress for glide dislocation coincides with
the critical stress at low temperature, and the Peierls stress for shuffle dislocation coincides with
the critical stress at high temperature. The physical implication of the results is discussed.

1. Introduction

Silicon is an elemental covalent semiconductor crystallizing in
the diamond structure. As a highly covalent crystal, silicon
is hard to deform plastically at room temperature and is
deformable only above several hundred degrees celsius [1–5].
The temperature dependence of the critical shear stress has a
steep increase near 700 K [1–3] (873 K [6, 7]). It increases
from 100 MPa to 1 GPa when the temperature decreases from
700 to 500 K [4, 8]. Such a steep change in the critical shear
stress implies a transition from ductile to brittle. Dislocations
are responsible for crystal plasticity and the critical shear stress
is related to the mobility of the dislocations. Understanding of

* The work is supported by the National Natural Science Foundation of China
(Grant No. 10774196) and Chongqing University Postgraduates’ Science and
Innovation Fund (Grant No. 200904A1A0010315).

the structure and motion of dislocations is therefore crucial to
obtain a comprehensive picture of silicon plasticity.

In silicon, predominant slip systems are the 60◦ and screw
dislocations oriented along 〈110〉 directions in the {111} slip
plane and the dislocations may be present in the glide or
shuffle set configurations [9]. The dislocation is referred
to as a shuffle one if the cut plane is between the widely
spaced {111} planes, and a glide one if between the closely
spaced {111} planes (see figure 1). Besides, the glide 60◦
and screw dislocations dissociate into a 30◦ and a 90◦ partial
dislocation and into two 30◦ partial dislocations respectively,
separated by a ribbon of intrinsic stacking fault [10–12]. There
is no low energy stacking fault for a shuffle set, and so
the shuffle dislocation does not dissociate. Because silicon
is brittle at room temperature, it is difficult in experiment
to obtain the Peierls stress, the stress required to move the
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Figure 1. The glide set and shuffle set in silicon. When the lattice is
divided by the cut plane given by the dashed line, for the glide set, as
a repeat unit, the surface layer is composed of two planes with the
same index (Aa, Bb or Cc), while for the shuffle set the surface layer
is composed of two planes with different index (Ac, Ba or Cb). The
atoms in the glide surface layer are connected through a vertical
bond, but the atoms in the shuffle surface layer are connected through
three nearly horizontal bonds. As a consequence, the discrete effect
originating from the interaction between the atoms in the surface
layer must be much larger for the shuffle set than for glide set.

dislocation from one lattice site to the next. The Peierls stress
estimated by extrapolating the yield strengths to the absolute
zero temperature is of the order 0.1μ − 0.5μ (7–34 GPa),
where μ is the shear modulus [13–15]. Recently, a great
deal of attention has been paid to the core reconstruction of
dislocations in silicon [16–24]. It is believed that dislocation
motion occurs by nucleation and propagation of kinks along
the dislocation line. Due to thermal fluctuation or the
action of an applied stress, double kinks can be nucleated
and the individual kinks propagate in opposite directions.
However, formation and migration of kinks are intimately
related to the basic characteristics of dislocations in the
ground state. Although dislocations in silicon have been
studied extensively, understanding of the core structure and
relevant features of dislocations in the ground state still need
to be improved. For instance, there is a long-standing
controversy: which dislocation moves more easily, glide or
shuffle [25–29]? Initially, it is generally believed that in silicon
the glide dislocation should move more easily than the shuffle
dislocation [9]. The direct observation of the dissociated
dislocation seems in favor of the glide set [30–33]. However,
there is evidence that the Peierls stress of shuffle dislocation
should be lower than that of glide dislocation [28, 34–37].

There are continuous efforts to improve the understanding
of the relationship between dislocation properties and crystal
characteristics. A number of numerical calculations have
been carried out using atomistic simulation or an electron
density functional technique, and a variety of results have
been obtained [16–25, 38, 39]. Meanwhile, analytical PN
theory, which is physically transparent, was used to investigate
the basic properties of dislocations. In the classical PN
model [9, 34, 40], the crystal with a dislocation is firstly
cut into two parts and treated in a continuum framework.
The dislocation is produced through nonlinear interaction
between two parts and the interaction was taken to be
sinusoidal with an amplitude determined by imposing the

proper elastic slope. Later development recognized that a
physically more realistic description of the restoring force is
given by the generalized stacking fault energy surface (γ -
surface) first suggested by Christian and Vitek [41]. Since
the discrete effect is missed in the continuum approximation,
the classical PN model becomes increasingly inaccurate for
narrow dislocations [34, 35, 42]. Besides, the discrete
effect will remarkably modify the core structure where the
displacement field varies rapidly [43]. Recently, one of the
authors had successfully relaxed the continuum approximation
and obtained an improved PN equation based on the lattice
dynamics [43–45]. The discrete effect is represented by a term
proportional to the second-order derivative of displacement
in the improved PN equation. Physically, the discrete term
originates mainly from the interaction between the atoms
on misfit planes. Even for the wide dislocations in simple
metals, the agreement between the theoretical prediction and
numerical simulation can be improved remarkably when the
improved PN equation is applied [46, 47]. For the narrow
dislocations in silicon, the discrete effect is no doubt more
important and should be considered adequately.

In this paper, the core structures of dislocations in silicon
have been studied by the improved PN equation which includes
the correction from discreteness, and the Peierls barrier and
stress have been evaluated by considering the contribution
of strain energy. It is found that in addition to width
the core of dislocations in silicon may exhibit distinct fine
structure. Furthermore, the total energy calculation shows
that there exists a metastable state for glide 90◦ or shuffle
screw dislocations. Our theoretical predictions can be verified
directly by numerical simulation. The Peierls stress obtained
in our calculation is about 10 GPa for a glide dislocation,
which coincides with the critical stress at low temperature. The
Peierls stress of shuffle dislocation is greatly lowered by the
discrete effect. It is smaller than 1 GPa which coincides with
the critical stress at high temperature. Our results hint that
glide dislocation may be responsible for the low temperature
plasticity while shuffle dislocation is responsible for high
temperature plasticity. It seems that at low temperature shuffle
dislocation is absent and it appears when temperature is high
enough. The transition from brittle to ductile is probably
related to the excitation of shuffle dislocations. The outline of
this paper is as follows. In section 2, the dislocation equation
and γ -surface are discussed. Section 3 is focused on the
correction of the discrete effect. In section 4, dislocation width
and Peierls barrier and stress are calculated in detail. Section 5
is a discussion and summary.

2. Dislocation equation with correction from the
lattice effect

The two-dimensional dislocation equation for straight disloca-
tions can be obtained from the lattice dynamics and symmetry
principle [45]

−βe

2

d2ux

dx2
− Keσ

2π

∫ +∞

−∞
dx ′

x ′ − x

(
dux

dx

) ∣∣∣∣
x=x′

= fx , (1)
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Table 1. The γus in [34] and [27] and dimensionless parameters �1 and �2, where N, A and AV represent γus calculated with no relaxation,
atomic relaxation at ideal volume and atomic and volume relaxation, respectively.

Reference [34] Reference [27]

Glide set γus (eV Å
−2

) 0.118 (AV) 0.157 (N) 0.126 (A) 0.119 (AV)
�1 −0.08 0.23 −0.01 −0.06
�2 0.00 0.00 0.00 0.00

Shuffle set γus (eV Å
−2

) 0.105 (AV) 0.115 (N) 0.113 (A) 0.104 (AV)
�1 −0.80 −0.80 −0.80 −0.80
�2 0.63 0.71 0.70 0.63

−βs

2

d2uy

dx2
− Ksσ

2π

∫ +∞

−∞
dx ′

x ′ − x

(
duy

dx

) ∣∣∣∣
x=x′

= fy, (2)

where Ke and Ks are the energy factors of the edge and
screw dislocations [9], σ is the area of primitive cell
of the misfit plane (which is a two-dimensional triangular
lattice), ux and uy are the edge and screw components of
relative displacement field, the coordinates axes x and y are,
respectively, perpendicular and parallel to the dislocation line.
The energy factors can be expressed in terms of effective elastic
constants Ke = μ′/(1 − ν ′) and Ks = μ′, with the values
μ′ = 63.75 GPa and ν ′ = 0.256 [9, 34]. The nonlinear
interaction, f = ( fx , fy), is given by the gradient of the γ -
surface as suggested by Christian and Vitek

f = −∇γ (u)σ.

Although the new equation is formally universal, the
parameters βe and βs related to the discreteness correction
depend on lattice structure and dislocation type. They will be
given explicitly in section 3.

Following the method given in [34] and [47], equations (1)
and (2) can be incorporated into a single equation for an
arbitrary mixed dislocation

−βb

2

d2u

dx2
− Kbσ

2π

∫ +∞

−∞
dx ′

x ′ − x

(
du

dx

) ∣∣∣∣
x=x′

= fb(u), (3)

with
βb = βe sin2 θ + βs cos2 θ,

Kb = μ′
(

sin2 θ

1 − ν ′ + cos2 θ

)
,

(4)

where θ is the angle between dislocation line and Burgers
vector, both u and fb(u) are defined along the Burgers vector.
The γ -surfaces of silicon have been calculated by several
groups [27, 34]. It is noted that the γ -surface along the 〈112〉
direction of the glide set and along the 〈110〉 direction of the
shuffle set can be approximately expressed as

γb(u) = μ′b2

4π2d

(
1 + cos

2πu

b

)

×
(

1 + �1 cos2 πu

b
+ �2 cos4 πu

b

)
, (5)

where the sum � = �1 + �2 is given by the unstable stacking
fault energy γus = μ′b2(1 + �)/2π2d .

In table 1, γus, �1 and �2 are listed for fitting the γ -
surface given in [34] and [27]. In figure 2, the γ -surface along

Figure 2. The γ -surface along the 〈112〉 direction (the upper one)
and along the 〈110〉 direction (the lower one) given by Joos et al [34]
and by equation (5), where bp = 2.22 Å is the Burgers vector of glide
partials, and b = 3.84 Å is the Burgers vector of shuffle dislocations.
Apparently, the numerical results can be well described by
equation (5).

the 〈112〉 direction of the glide set and along the 〈110〉 direction
of the shuffle set given by Joos et al [34] and by equation (5) are
plotted. Apart from the intrinsic stacking fault energy which is
small for silicon, fitting is satisfactory.

The γ -surface has a great effect upon the dislocation
characteristics. As recovery of the elastic limit is required for
small deformation, the most important factor is the unstable
stacking fault energy γus that measures the height of a γ -
surface. In comparing with the shuffle set, the γus of the glide
set more sensitively depends on whether relaxation is allowed
and how it occurs. Because of bond flip appearing for large
distortion, the relaxed γ -surface should be more suitable than
the unrelaxed one. The unstable stacking fault energy γus of the
glide set is larger than that of the shuffle set, as a consequence,
it is expected that the width of the shuffle dislocation should be
wider than that of the glide dislocation.

3. Evaluation of parameters βe and βs by using a
dynamic model

As pointed out in [44, 45], the second-differential terms newly
appeared in the dislocation equations represent the lattice
discrete effect. They mainly result from the surface effect.

3
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When a crystal is viewed as a set of parallel lattice planes, the
surface plane is not equivalent to those in the interior. As is
well known, the misfit planes become the surface planes of the
semi-crystals while the crystal is cut into two semi-crystals for
constructing a dislocation. In the continuum approximation,
the distinction between the surface and internal planes cannot
be recognized and the surface effect is missed. From exactly
solvable models [43, 44] in which discreteness of a lattice
can be fully considered, one clearly sees the discreteness
correction appearing in terms of the second-differential of the
displacement. Physically, the integro term in the dislocation
equation represents a long range interaction which is inversely
proportional to the distance, the differential term describes
short range interaction which results from the interaction
among the atoms on the surface plane.

The discrete parameters βe and βs are, respectively, related
to the longitudinal and transverse wave velocities (csl and cst)
of the surface that is decoupled [45]

βe = 1
2ρsσc2

sl, (6)

βs = 1
2ρsσc2

st. (7)

For Bravais lattices, acoustic wave velocities csl and cst can
be approximately given by the structural and elastic constants.
However, the results for Bravais lattices are no longer valid for
complex lattices. In silicon, there are two kinds of dislocations
with the same Burgers vector: glide and shuffle dislocations.
As shown in figure 1, when the lattice is divided by the cut
plane, the surface layer as a repeat unit is composed of planes
with the same index (Aa, Bb or Cc) for glide dislocation, and
is composed of planes with different index (Ac, Ba or Cb) for
shuffle dislocation. The surface layers are so different for glide
and shuffle dislocations that the relevant discrete parameters
are different and should be treated separately.

In order to investigate the discrete parameters βe and βs

quantitatively, a simple dynamics model is used to explore the
relationship between the parameters and silicon characteristics.
The lattice Hamiltonian includes the interaction energy
attributed to variation of bond length and angle

H = 1

2

∑
R

{[
α1

2|bi |2
4∑

i=1

(∇bi uR · bi )
2

+ α2

2|bi |2
3∑

j=1

∑
k> j

(∇b j uR · bk + ∇bk uR · b j )
2

]

+
[

α1

2|bi |2
4∑

i=1

(∇−bi vR · bi )
2 + α2

2|bi |2

×
3∑

j=1

∑
k> j

(∇−b j vR · bk + ∇−bk vR · b j )
2

]}
, (8)

with

∇bi uR = vR+bi − uR, ∇−bi vR = uR−bi − vR, (9)

where α1 and α2 are force constants describing the force
produced by variation of bond length and angle, uR and vR

the displacements of the two atoms in the same primitive cell,

Figure 3. The basis vectors ai (i = 1, 2, 3) and bond vectors
bi (i = 1, 2, 3, 4) of silicon. For an atom (at point O) in the diamond
lattice, there are four nearest neighbor atoms forming a regular
tetrahedron, bond vectors bi connect the atom to its nearest
neighbors. The horizontal closest-packed plane is chosen to be the
x–y plane, where y is along the closest-packed line. The
displacements of atoms at points O and O′ are, respectively, denoted
by vR and uR.

ai (i = 1, 2, 3) are the basis vectors and bi (i = 1, 2, 3, 4) the
bond vectors (see figure 3).

At first, one needs to determine the interaction constants
and verify the validity of the model. It can be proved that under
homogeneous deformation, the energy density is given by

ε = α1 + 6α2

6a0
(e2

1 + e2
2 + e2

3)

+ 2(α1 − 2α2)

6a0
(e1e2 + e1e3 + e2e3)

+ 16α1α2

3(α1 + 2α2)a0
(e2

4 + e2
5 + e2

6). (10)

Thus

c11 = α1 + 6α2

3a0
, c12 = α1 − 2α2

3a0
,

c44 = 8α1α2

3a0(α1 + 2α2)
,

where a0 = 5.43 Å is the lattice constant. We select c11 and
c12 to determine force constants

α1 = 3a0(c11 + 3c12)

4
, α2 = 3a0(c11 − c12)

8
(11)

and then calculate c44 as predicted from the model. The results
are listed in table 2. One sees that the c44 given by the model
are in accordance with experimental data.

Now, we need to decouple the surface layer, i.e. cancel the
interaction between the surface layer and interior layers. To do
this, the interaction force is firstly expressed in terms of relative
displacements of paired atoms and each individual term is
interpreted as an interaction between the paired atoms. We then

4
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Table 2. The atomic force constants α1 and α2 calculated from equation (11) using the elastic constants c11 and c12 in [48–50] and c44

calculated from equations (11). Also shown are the elastic constants obtained through continuum elasticity theory by Jakata and Every [48],
medium of the shell model (SM), molecular dynamics (MD) and ab initio lattice dynamics (Ab) by Maranganti and Sharma [49] and
Landolt-Bornstein [50]. The elastic constants are in units of 102 GPa and force constants in units of 102 N m−1.

Reference [48] Reference [49] (MD) Reference [49] (Ab) Reference [49] (SM) Reference [50]

c11 1.78 1.45 1.68 1.66 1.65
c12 0.75 0.84 0.45 0.48 0.63
c44 0.81 0.70 0.81 0.80 0.79
α1 1.63 1.62 1.23 1.26 1.44
α2 0.21 0.12 0.25 0.24 0.21
c44 (by model) 0.82 0.53 0.87 0.85 0.79

only keep the terms that represent the interaction between the
atoms in the surface layer. Because only the plane deformation
is of interest, the normal displacement is fixed to be zero. The
next step is adding the forces felt by the atoms in a cell and
obtaining the relation between the total force acting on the cell
and the displacement. The last step is taking the continuum
approximation and obtaining the acoustic wave velocity of the
surface layer. In such a way, the discrete parameters can be
expressed by the force constants. For the case of the glide set,
one has uR = vR because the surface layer is composed of two
face-to-face triangle lattices and only long-wavelength acoustic
waves are considered. The relationship between the interaction
force and displacement is(

f x
R

f y
R

)
=

( 2α2
9 (2�1 + 2�12 − �2)

2α2

3
√

3
(�1 − �12)

2α2

3
√

3
(�1 − �12)

2α2
3 �2

)

×
(

ux
R

uy
R

)
, (12)

with

�1 = T1 + T −1
1 − 2, �2 = T2 + T −1

2 − 2,

�12 = T1T −1
2 + T −1

1 T2 − 2,

where Ti (i = 1, 2) are the translation operators, Ti uR =
uR+ai . In the slowly varying approximation, equation (12)
becomes

(
f x
R

f y
R

)
=

( 2α2a2

3
d2

dx2
α2a2

3
d2

dx dy

α2a2

3
d2

dx dy
2α2a2

3
d2

dy2

) (
ux

R

uy
R

)
, (13)

where a = a0/
√

2 is the length of the primitive vector (period
in the direction of the dislocation line). From equations (6), (7)
and (13), it is easy to obtain

βe = α2a2

3
= (c11 − c12)a3

0

16
, βs = 0. (14)

In a similar way, the parameters βe and βs can be obtained
for the case of the shuffle set

βe = 2(α1 + α2)a2

9
, βs = α2a2

3
,

or in terms of elastic constants

βe = (3c11 + 5c12)a3
0

24
, βs = (c11 − c12)a3

0

16
.

The parameters βe and βs that describe the discrete effect
depend on the structure detail as well as the elastic constants.
When a complex lattice is dealt with, these parameters may
be quite different for different dislocations even though their
Burgers vectors are the same. Our evaluation presents an
approximated method to extract the parameters βe and βs

from the long-wavelength dynamics of the crystal. A simple
way to obtain the parameters is by investigating the tensile
deformation perpendicular to the dislocation line and the shear
deformation along the dislocation line and finding the relation
between the force and displacement. Actually, the parameters
βe and βs are, respectively, the effective tensile and shear
constants.

4. Dislocation width and Peierls barrier and stress

The dislocation equation is a nonlinear integro-differential
equation and can be hardly solved exactly. The disloca-
tion solution of the classical Peierls equation was usually
obtained through a rational superposition of small disloca-
tions [34, 36, 51, 52]. Recently, a new method, the truncating
method for solving the dislocation equation, was proposed by
Wang [53]. The trial solution only has one constant that needs
to be determined

u = b

π

(
arctan q + cq

1 + q2

)
, (15)

with
q = kx, k = k0(1 − c),

k0 = 2

d

(
sin2 θ

1 − ν ′ + cos2 θ

)−1

,

(16)

where b is the Burgers vector, d is the spacing between
glide planes and c is a constant determined by the dislocation
equation. For convenience, we have listed the elementary
constants in table 3.

The dislocation density is given by

du

dx
= kb

π

[
1 − c

1 + q2
+ 2c

(1 + q2)2

]
, (17)

which is a kind of power series that converges rapidly. Noting
that far from the dislocation core, dislocation density is
independent of parameter c

du

dx
= b

k0πx2
,

5
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Table 3. The elementary constants: Burgers vector b, spacing d ,
parameters k0 and βb and energy factor Kb for various dislocations,
where elastic constants in [50] are used.

Dislocation b (Å) d (Å) k0 (Å
−1

) βb (eV) Kb (eV Å
−3

)

Glide 30◦ 2.22 0.78 2.35 1.60 0.43
Glide 90◦ 2.22 0.78 1.90 6.40 0.54
Shuffle 60◦ 3.84 2.35 0.68 26.93 0.50
Shuffle
screw

3.84 2.35 0.85 6.38 0.40

the asymptotic behavior of the dislocation is therefore
controlled by k0, which only depends on the elasticity of the
crystal. Parameter c only has an effect on the core structure
and can be referred to as the core parameter of a dislocation.
Substituting the solution of equation (15) into equation (3) and
following the truncating method [53], it is found that c should
satisfy the algebraic equation

2βbμ
′

K 2
b σd

(1+2c)(1−c)2− 4c2

5
−�1

(
1 + c

5

)
− 6�2

5
= 0. (18)

The first term proportional to βb represents the correction from
the discrete effect. If parameters βb, �1 and �2 vanish,
then c = 0 and equation (15) is just the exact solution of
the classical PN equation. If parameter βb equals zero, one
recovers the classical PN model with a generalized stacking
fault restoring force. The core parameters c calculated from
equation (18) and half width ξ , defined as the distance over
which u changes from 0 to b/4 are listed in table 4.

It is shown that the half width obtained by the truncating
method agrees well with the result (in parenthesis) given
by Joos et al when the discrete effect is not considered.
This suggests that the truncating method is efficient and
convenient since there is only one constant that needs to be
determined and the results are satisfactory. After considering
the correction from the discrete effect, the half width of
the dislocation becomes wider, but the correction is very
different for different dislocations (see table 4). For shuffle
60◦ dislocation, the correction is especially large and the width
is doubled (1.61 Å changes to 3.57 Å). For the 30◦ partial
dislocation, the correction is relatively small and the width is
still very narrow (0.64 Å). Although the discrete parameter
βb is nearly the same for a 90◦ partial dislocation and shuffle
screw dislocation, correction to the 90◦ partial dislocation is
larger because it is narrower. The narrower the dislocation is,
the more the correction by the discrete effect.

In the classical PN theory, the Peierls barrier and stress
are obtained by calculating the misfit energy associated with
discreteness of the lattice. However, it has been shown that
the contribution from the strain energy may be larger than
that from the misfit energy [54]. The total energy including
the contribution from both misfit and strain energies should
be evaluated to obtain the correct result. In PN theory, the
Hamiltonian can be written as a sum of three terms

H = Ha + Hb + Hab,

where Ha (Hb) is the Hamiltonian of the semi-crystal above
(below) the cut plane, Hab is the interaction between two

Table 4. The core parameter c and half width ξ calculated by
considering discrete effect. c0 and ξ0 are the results given by the
classical PN model with the same γ -surface. The width is given in
units of the Burgers vector b. For comparison, the results in [34] are
also shown in parenthesis.

Dislocation �1 �2 c0 c ξ0 (b) ξ (b)

30◦ −0.08 0.00 0.33 0.62 0.21(0.21) 0.29
partials 0.23 0.00 — 0.44 — 0.23

−0.01 0.00 0.11 0.58 0.19 0.27
−0.06 0.00 0.28 0.61 0.20 0.28

90◦ −0.08 0.00 0.33 0.72 0.26(0.26) 0.45
partials 0.23 0.00 — 0.62 — 0.36

−0.01 0.00 0.11 0.70 0.24 0.43
−0.06 0.00 0.28 0.72 0.25 0.45

Shuffle 60◦ −0.80 0.63 0.35 0.79 0.42(0.51) 0.93
−0.80 0.71 — 0.76 — 0.83
−0.80 0.70 — 0.77 — 0.86

Shuffle screw −0.80 0.63 0.35 0.70 0.34(0.41) 0.55
−0.80 0.71 — 0.66 — 0.50
−0.80 0.70 — 0.66 — 0.50

semi-crystals divided by the cut plane. Each semi-crystal
is approximated as a harmonic one in which atoms interact
through a harmonic force. The potential energy due to
deformation of the semi-crystals is referred to as strain energy
while the interaction energy is referred to as misfit energy.
It was proved that in equilibrium the potential energy of a
harmonic semi-crystal imposed by external force f can be
obtained by [54]

Ha = 1
2

∑
i

fi · ui ,

where the sum runs over the atoms on which the nonzero
external force is imposed. Therefore, for a dislocation with
length L, the strain and misfit energies of dislocation per unit
length are given by

Es(x0) = 1

L
(Ha + Hb) = 1

2

∞∑
l=−∞

fb(ul)ul × σ

a
, (19)

Em(x0) = Hab

L
=

∞∑
l=−∞

γb(ul) × σ

a
, (20)

where ul = u(xl − x0) is the relative displacement for
dislocation located at x0, a is the length of the primitive vector
(period in the direction of the dislocation line) and the sum is
carried over the atoms in the horizontal band with width a in a
misfit plane (figure 4). The dislocation energy per unit length
is

Edis(x0) = Es(x0) + Em(x0). (21)

Substituting the γ -surface and the resulting force into the
above equations, we have

Edis =
∞∑

l=−∞

μ′b2σ

4π2ad

{(
1 + cos

2πul

b

)

×
(

1 + �1 cos2 πul

b
+ �2 cos4 πul

b

)

+
[
(1 + �1) sin

2πul

b
+ �1

2
sin

4πul

b

+ 3�2 sin
2πul

b
cos4 πul

b

]
ul

}
. (22)
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Figure 4. Core structure of dislocations. The solid and empty circles,
respectively, represent the atoms on the misfit planes that are below
and above the cut plane. For simplicity, the distortion is shown by the
relative displacements of atoms on the upper misfit plane. In addition
to the width of dislocations, the core structures are distinct. The
symmetry axis plotted by a solid line can be located at the middle of
two atom rows (90◦ partial dislocation and shuffle screw dislocation)
or coincide with one atom row (30◦ partial dislocation and shuffle
60◦ dislocation).

For a narrow dislocation like the one in silicon, the series
in the summation converges rapidly apart from an additional
constant that has no contribution to the Peierls barrier and
Peierls stress [35]. From the total energy calculation, it is
found that besides the width of the dislocation, the dislocation
core of a free stable dislocation may be different according to
where the symmetry axis (solid line in figure 4) is located.
For the glide 90◦ dislocation and shuffle screw dislocation,
the symmetry axis is located at the middle of two atom rows
and no atom appears on the symmetry axis. For the glide
30◦ dislocation and shuffle 60◦ dislocation, the symmetry axis
coincides with an atom row of one misfit plane and so atoms
appear on the axis. In addition, for a glide 30◦ dislocation,
the atoms on the misfit plane, in which the symmetry axis
coincides with an atom row, have a tendency to accumulate
toward the core center. In contrast, for a shuffle 60◦ dislocation,
the atoms on the plane have a tendency to disperse outward.
Therefore, just from the atom configuration at the core center,
one can recognize three types of dislocations. The exact
position of the core center can be directly verified by numerical
simulation, and it provides a new prediction that can be used to
verify the validity of PN theory.

As a function of dislocation position, the misfit energy,
strain energy and total energy have been calculated and plotted

Table 5. The Peierls barriers in units of 10−2 eV Å
−1

for various
dislocations. Ep is obtained from the total energy, Em

p (0) and Em
p are

obtained from the misfit energy only, Em
p (0) does not take into

consideration the correction from the discrete effect. For comparison,
the results in [34] are also shown in parenthesis.

Dislocation �1 �2 Em
p (0) Em

p Ep

30◦ −0.08 0.00 35 (34.3) 33 12
partials 0.23 0.00 — 47 28

−0.01 0.00 38 36 16
−0.06 0.00 36 34 13

90◦ −0.08 0.00 33 (32.3) 23 1.6
partials 0.23 0.00 — 41 17

−0.01 0.00 36 28 4.3
−0.06 0.00 33 24 2.0

Shuffle 60◦ −0.80 0.63 13 (11.6) 1.3 1.8
−0.80 0.71 — 2.7 2.8
−0.80 0.70 — 2.2 2.6

Shuffle screw −0.80 0.63 17 (14.8) 7.6 0.85
−0.80 0.71 — 11 2.4
−0.80 0.70 — 11 2.3

in figure 5, and the Peierls barriers for various dislocations
are shown in table 5. The results clearly tell us that when
a dislocation moves, both strain and misfit energies change
periodically. Their amplitudes are of the same order, but phases
are opposite. The amplitude of the misfit energy is larger than
that of the strain energy for the glide dislocations and shuffle
screw dislocation. In contrast, for the shuffle 60◦ dislocation
the amplitude of the misfit energy is smaller. Because of
opposite phases, the misfit and strain energies cancel each other
and the Peierls barrier is much smaller than that conventionally
given by the misfit energy. In particular, for the glide 90◦
partial and shuffle screw dislocations, the amplitudes of misfit
and strain energies are nearly equal and cancelation occurs.
The Peierls barrier is nearly one order of magnitude lower.
Therefore, it is necessary to consider the strain energy as
well as misfit energy. Besides, due to competition between
the misfit and strain energies, a small energy valley appears
between two neighbor ground state positions for the glide 90◦
and shuffle screw dislocations. In particular, for the glide 90◦
dislocation, the valley depth is nearly a half of the barrier
height. The new energy valley implies that there is a metastable
state aside from the ground state. It is observed that the
appearance of the metastable state is closely related to where
the symmetry axis lie; it appears only when the axis lies
between two atom rows.

Due to discreteness of the lattice, a dislocation cannot
move unless the applied stress exceeds the Peierls stress.
The Peierls stress is the minimum stress needed to move a
dislocation and it can be obtained from the maximum slope
of the dislocation energy [9]

σp = max

∣∣∣∣∣
1

b

dEdis(x)

dx

∣∣∣∣∣, (23)

where both the misfit energy and the strain energy are
considered. The Peierls stresses have been calculated and the
results are listed in table 6. In order to verify our method used
here, Peierls stresses σ m

p (0) given in the classical PN theory,

7
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Figure 5. The misfit, strain and total energies as a function of dislocation position, where the x axis is in units of the period
√

3a/2, and the y
axis in units of eV Å

−1
. The energies are calculated by keeping the 20 and 50 leading terms in the summations, respectively, for the glide and

shuffle dislocations. The ground energy is taken to be zero-point. There is a metastable state resulting from strong cancelation between the
strain and misfit energies for 90◦ and screw dislocations. (a) Glide 30◦ partial; (b) glide 90◦ partial; (c) shuffle 60◦; (d) shuffle screw.

Table 6. The Peierls stress in units of 10−2 eV Å
−3

for various
dislocations. σp is obtained from the total energy, σ m

p (0) and σ m
p are

obtained from the misfit energy only, σ m
p (0) does not consider the

correction from the discrete effect. For comparison, the results
in [34] are also shown in parenthesis.

Dislocation �1 �2 σ m
p (0) σ m

p σp

30◦ −0.08 0.00 24 (22) 17 6.5
partials 0.23 0.00 — 33 16

−0.01 0.00 28 21 8.5
−0.06 0.00 25 18 7.0

90◦ −0.08 0.00 19 (18) 10 1.2
partials 0.23 0.00 — 21 8.6

−0.01 0.00 23 12 2.6
−0.06 0.00 20 11 1.4

Shuffle 60◦ −0.80 0.63 3.3 (3.0) 0.31 0.44
−0.80 0.71 — 0.66 0.69
−0.80 0.70 — 0.55 0.63

Shuffle screw −0.80 0.63 4.6 (4.1) 1.9 0.34
−0.80 0.71 — 2.8 0.84
−0.80 0.70 — 2.8 0.83

where only the misfit energy is considered and the discrete
effect is neglected, are also listed for various dislocations. Our
results are in good agreement with those obtained by Joos et al

(given in parenthesis). If only the misfit energy is considered,
the Peierls stress will be decreased by the discrete effect. This
is not surprising because the discrete effect always makes the
dislocations become wider. When the strain energy is also
considered at the same time, the Peierls stress obtained from
total energy is further decreased except for the case of a shuffle
60◦ dislocation. For a shuffle 60◦ dislocation, the amplitude
of strain energy is much larger than that of misfit energy.
As a result, the Peierls barrier and stress increase rather than
decrease as for the other cases.

Apparently, the Peierls stresses predicted here are much
smaller than those given by classical PN theory especially
for shuffle dislocations. For the shuffle 60◦ dislocation,
numerical results obtained by molecular dynamics or density
functional theory are in the range between 0.4 × 10−2 and
1.7 × 10−2 eV Å

−3
(0.6–2.8 GPa) [55–57]. Our result agrees

well with the numerical one. For the shuffle screw dislocation,
numerical results are in the range between 1.9 × 10−2 and
2.8 × 10−2 eV Å

−3
(3–4 GPa) [58–60]. Our result obtained

from the total energy calculation is smaller than the numerical
one. It is noted that if only the misfit energy is considered, the
resulting Peierls stresses are coincident for both the shuffle 60◦
and screw dislocation. For the glide 30◦ and 90◦ partials, the

8
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atomic model gave 0.132 eV Å
−3

(21 GPa) and 0.106 eV Å
−3

(17 GPa) respectively [28].
It is interesting that the Peierls stress for the glide

30◦ dislocation is 0.065–0.16 eV Å
−3

(10–26 GPa), which
coincides with the critical stress at low temperature 0.043–
0.215 eV Å

−3
(6.9–34 GPa) extrapolated from experimental

data [8, 13–15]. The Peierls stress for a shuffle dislocation
is 3.4–8.4 meV Å

−3
(0.54–1.3 GPa) which coincides with

the critical stress at high temperature (∼1 GPa) observed
in experiments [4, 8]. Our results strongly hint that glide
dislocation may be responsible for the low temperature
plasticity while shuffle dislocation may be responsible for high
temperature plasticity. It seems that at low temperature shuffle
dislocation is absent and it appears when temperature is high
enough. The transition from brittle to ductile is probably
related to excitation of shuffle dislocations.

5. Summary and discussion

The discrete effect that resulted from the interaction among the
atoms on the misfit plane has been investigated theoretically for
dislocations in silicon. The picture of dislocations in silicon
is substantially modified by the discreteness correction. For
shuffle dislocations, the widths are broadened doubly by the
discrete effect, and Peierls stresses calculated from total energy
are greatly lowered. For glide dislocations, the correction
for the discrete effect is relatively small, especially for 30◦
partial dislocation. The Peierls barrier calculated here is in
the range of 0.12–0.28 eV Å

−1
for 30◦ partial dislocation and

8.5–28 meV Å
−1

for shuffle dislocations. The Peierls stress is
in the range of 0.065–0.16 eV Å

−3
for 30◦ partial dislocation

and 3.4–8.4 meV Å
−3

for shuffle dislocations. Apparently,
the activating energy of glide and shuffle dislocations belongs
to a different energy scale. The dislocations in silicon are
actually divided into two categories according to their quite
different Peierls barriers and stresses. As a consequence, the
glide and shuffle dislocations should be respectively involved
in processes with different energy scales. From careful
calculation of total energy, it is found that the dislocation core
may exhibit different fine structure and there is a metastable
state for glide 90◦ and shuffle screw dislocations.

For a crystal, there may exist many kinds of dislocations,
edge, screw and mixed dislocations, etc. In principle,
the Burgers vectors may be distinct in both magnitude and
direction. However, the fundamental question is which kind
of dislocation is responsible for crystal plasticity. Some
dislocations may exist in crystals, but if the activation energy
is too high to be activated, they have nothing to do with the
process of plastic deformation. On the other hand, some
dislocations may be activated easily, but if their energy is too
high to exist stably, these dislocations will decay into one with
lower energy. Therefore, the dislocation responsible for crystal
plasticity must be the one that has low energy and can be
easily activated. For silicon, the glide and shuffle dislocations
have the same Burgers vectors and so there is no obstacle
preventing transformation between them. In experiment,
dissociated dislocations separated by an intrinsic stacking fault

are observed [10–12]. Since the stable stacking fault can exist
only in the glide set, it can be concluded that glide dislocations
should have lower energy. Based on the results obtained
by our calculation and experimental observations, we suggest
that at low temperature, shuffle dislocations are absent due to
their high energy and plastic behavior being dominated by the
glide dislocations. Because the glide dislocations are hardly
to be moved, silicon is brittle at low temperature. At high
temperature, a great number of shuffle dislocations are excited
and plastic behavior is dominated by the shuffle dislocations.
Because the shuffle dislocations can be moved as easily as
those in BCC metals, silicon is ductile at high temperature.
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